Divisione di numeri naturali
Nel caso dell’ operazione di divisione il simbolo da usare è “:” e si legge “diviso”. Gli operandi, cioè i numeri sui quali si opera, sono chiamati il primo dividendo e il secondo divisore, mentre il risultato è chiamato quoziente. Ad esempio nella divisione , il numero 6 è il dividendo, il numero 3 è il divisore, mentre 2 è il quoziente di 10 diviso 5.
La divisione è l’ operazione inversa della moltiplicazione.
In pratica, il quoziente è quel numero che moltiplicato per il divisore dà come risultato il dividendo. Infatti, e .
IMPORTANTE! Il divisore non può mai essere uguale a zero.
Ragioniamoci un po’ con un esempio…
Volendo per esempio calcolare 13 : 0 sarebbe impossibile individuare un numero ( ? ) tale che
( ? ) x 0 = 13
Rifletti con calma quando ti si presenta questa eventualità: spesso infatti lo studente scrive 13 : 0 = 0 !
Se vuoi, puoi anche pensare che è proprio impossibile dividere 13 caramelle se non ci sono bambini (0 bambini) a cui distribuirle!
Altro caso strano…e se dividendo e divisore sono contemporaneamente nulli? Cioè: se dobbiamo calcolare 0:0 ?
Basta osservare che ogni numero naturale può essere il quoziente.
Infatti per come abbiamo definito la divisione, bisognerebbe trovare un numero naturale che moltiplicato per 0 dia come risultato 0;
ma qualunque numero moltiplicato per 0 da come prodotto 0!
In questo caso diremo che l’ operazione è indeterminata.
RIEPILOGO DEI CASI PARTICOLARI
Per qualunque valore di a
a : a = 1
a : 1 = a
0 : a = 0
a : 0 = impossibile
0 : 0 = indeterminata
La divisione non è un’operazione interna nell’ insieme dei numeri naturali, infatti ci sono molti casi in cui il quoziente non è un numero intero. (13 : 5 = ?)
In generale, diremo che un numero intero è divisibile per un secondo numero intero se la divisione del primo per il secondo produce come risultato un numero intero.
Per il nostro esempio () diremo che il numero 6 è divisibile per il numero 3, in quanto il risultato è un numero intero.
Torna alla Home Page